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A B S T R A C T   

Stability of objects in fluid flow is an interesting and significant subject in many fields. From 
thermodynamics point of view, the constructal law by Bejan et al. proposed that in some scenario, 
objects tend to be stable when the drag reaches maximum. To investigate the relation between 
drag and stable positions, we analyzed two simple cases by the finite element method: an ellip-
tical cylinder and a rectangular cylinder immersed in 2D uniform laminar flow. The ellipse is 
stable when its major axis is perpendicular to the mainstream and the drag reaches maximum; yet 
the rectangle is stable when the length is perpendicular to the mainstream, with drag ranging 
from minimum to maximum depending on its aspect ratio. Our results show that there is no 
universal relation between drag and stability.   

1. Introduction 

The research on the stability of objects in fluid flow has great academic and industrial significance in many fields. The motion of 
fluids satisfies the Navier-Stokes equation and shows nonlinear characteristics. Thus, stability analysis of objects in fluid flow is very 
complicated. 

Constructal law, proposed by Bejan et al., is claimed to be a universal thermodynamic law which states: “for a finite-size flow 
system to persist in time to survive, its configuration must evolve in such a way that it provides an easier access to the currents that flow 
through it.” [1] Constructal law has been used in many fields, especially the design of heat exchangers [2,3]. According to the con-
structal law, they proposed a criterion for stable positions of floating objects, stating that an object in flow field is stable when the drag 
reaches maximum [4]. As shown in Fig. 1, an object (iceberg or tree log) floats on the surface of the ocean. The atmosphere (a) moves 
with the wind speed Ua, while the ocean water (b) is stationary. If we consider (a)þ(b) to be a system, the constructal law requires the 
object to bring (a) and (b) to equilibrium the fastest, namely the object stabilizes where it reaches maximum drag. The stable position 
of the cylinder is (1) only, although both (1) and (2) positions are equilibrium. 

In this paper, we try to find the relation between drag and stable positions. We analyzed the stable positions of an ellipse and a 
rectangle in uniform laminar flow by the finite element method. Our results show that stable positions of objects do not necessarily 
correspond to maximum drag. 
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2. Methods 

2.1. Criterion of stable positions 

In this paper, we focus on systems with single degree of freedom, specifically, objects with fixed centroids and rotational freedom. 
As shown in Fig. 2, the object is only able to rotate about its fixed centroid. Our goal for the stable position is equivalent to looking for 
the stable angle α. 

Considering simple configuration and relatively fast response, we deduced a criterion to determine the object’s stable position 
based on quasi-steady assumptions [5]. 

Generally, stability depends on forces applied to the objects. For our system, stability depends on moment M, assumed to be a 
function of angle of attack α and angular velocity ω: 

M¼Mðα;ωÞ (1) 

Let α ¼ α’ be an equilibrium position of the object, then the moment about its fixed centroid is zero, namely, Mðα’;0Þ ¼ 0. We need 
to determine whether it is stable. When the object is disturbed, it has angular displacement Δα and angular velocity Δω, and moves 
away from the equilibrium position (ΔαΔω > 0). Due to small disturbance, we have 

M
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Dividing Eq. (2) by Δα: 

Mðα’þ Δα;ΔωÞ
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We define that when the moment is in the opposite direction to disturbance, the object is regarded as stable; otherwise it is unstable. 
This definition accords with the concept of “static stability” used in aircrafts [6]. Therefore, to be stable we require 

Fig. 1. Floating object at the interface between two fluid masses with relative motion (redrawn from Fig. 8 of Ref. [4]).  

Fig. 2. An object with fixed centroid in uniform flow.  
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Δω
Δα > 0;

Mðα’þ Δα;ΔωÞ
Δα < 0 (4) 

It is assumed that angular velocity always induces an opposite moment: 

∂Mðα;ωÞ
∂w

�
�
�
�
ðα’;0Þ

< 0 (5) 

Combining Eqs. (3)–(5), the equivalent condition for stableness is that angular displacement caused by disturbance always induces 
an opposite moment: 

∂Mðα;ωÞ
∂α

�
�
�
�
ðα’;0Þ

< 0 (6) 

Eq. (6) simplifies complicated transient analysis as a steady problem. The moment is only related to angle α, so we just need to 
calculate the steady fluid field after the object rotates by a small angle about its centroid. An equilibrium position is stable if the 
moment is opposite to the small angle by which the object rotates, and vice versa. 

2.2. Numerical simulation 

We tried two simple shapes to investigate the relation between drag and stability: an ellipse cylinder and a rectangular cylinder in 
2D uniform flow. The finite element method was used to calculate the fluid fields, implemented by COMSOL Multiphysics software. For 
each geometry, we calculated the steady fluid field varying the angle of attack α, and recorded the corresponding drag, namely force 
applied to the object along mainstream, and moment about the object’s centroid. 

The calculating domains are shown in Fig. 3. In either subfigure, segment BC is the inlet; the ellipse or rectangle denotes the wall; 
segment AD is the pressure outlet. 

It is worthy to note that to avoid possible singularity caused by sharp angles of the rectangle, each corner has a fillet whose radius is 
1/20 of the width, which is not shown in the figure. 

3. Results 

3.1. Elliptical cylinder 

We defined the Reynolds number with major axis length 2a as the characteristic length: 

Re¼
2ρaU

μ (7)  

where ρ denotes density, μ denotes viscosity, a denotes semi-major axis length and U denotes mainstream speed. 
Drag coefficient was defined by 

CD ¼
F

1
2 2aρU2 ¼

F
aρU2 (8) 

Fig. 3. Calculating domain for (a) an elliptical cylinder, (b) a rectangular cylinder (not to scale, unit: m).  
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where F denotes drag force. 
Similarly, the moment coefficient was defined as 

CM ¼
M

1
2 ρð2aÞ2U2

¼
M

2ρa2U2 (9)  

where M denotes moment. 
Parameters used in the simulation are presented in Table 1; the physical properties were designed to achieve required Reynolds 

numbers. We aimed to simulate steady flow, so we only tried configurations with low Reynolds numbers to avoid large Karman vortices 
and even turbulent flow. 

As shown in Fig. 4, the trends of drag coefficient CD and moment coefficient CM follow the same pattern when angle α changes 
despite different Reynolds numbers. When α increases, the actual frontal area of the elliptical cylinder increases so the drag increases as 
well. The moment remains positive (counterclockwise) except for α ¼ 0� or α ¼ 90�, which means the moment rotates the cylinder 

Table 1 
Parameters for uniform flow past an elliptical cylinder.  

No Semi major axis a/m Semi minor axis b/m Velocity U/(m⋅s� 1) Density ρ/(kg⋅m� 3) Viscosity μ/(N⋅s⋅m� 2) Reynolds number Re 

1 0.5 0.3 1 10 1 10 
2 0.5 0.3 1 50 1 50  

Fig. 4. Drag and moment vs. angle of attack for the elliptical cylinder when (a) Re ¼ 10, (b) Re ¼ 50.  

Fig. 5. The stable position of the elliptical cylinder.  

C. Deng et al.                                                                                                                                                                                                           



Case Studies in Thermal Engineering 15 (2019) 100539

5

towards the position where α ¼ 90�. Therefore, despite two equilibrium positions (α ¼ 0� and α ¼ 90�), the cylinder is only stable when 
α ¼ 90�, since any disturbance at α ¼ 0� will induce a moment rotating the cylinder to the other equilibrium position. At the stable 
position, the major axis is perpendicular to the mainstream and the drag reaches maximum, shown in Fig. 5. 

3.2. Rectangular cylinder 

Like the elliptical cylinder, we defined the Reynolds number 

Re¼
ρlU

μ (10)  

where l denotes the length of the rectangle. 
Drag coefficient CD and moment coefficient CM were defined by Eq. (11) and Eq. (12): 

Table 2 
Parameters for uniform flow past a rectangular cylinder.  

No Length 
l/m 

Width w/m Velocity 
U/(m⋅s� 1) 

Density ρ/(kg⋅m� 3) Viscosity 
μ/(N⋅s⋅m� 2) 

Reynolds number Re 

1 0.5 0.05,0.25,0.4,0.5 1 20 1 10 
2 0.5 0.05,0.25,0.4,0.5 1 100 1 50  

Fig. 6. Coefficients vs. angle of attack for the rectangular cylinder of (a) drag, Re ¼ 10, (b) moment, Re ¼ 10, (c) drag, Re ¼ 50, (d) 
moment, Re ¼ 50. 
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CD ¼
F

1
2 lρU2 (11)  

CM ¼
M

1
2 ρl2U2 (12) 

Parameter setting is shown in Table 2; again, the physical properties were designed intentionally. We tested the cases with four 
various aspect ratios and two Reynolds numbers. 

It can be observed from Fig. 6 that, similar to the elliptical cylinder, Reynolds number does not impact the relation between drag 
and moment for a given aspect ratio. In Fig. 6(b) and (d), the moment is always positive when w/l < 1, rotating the object counter-
clockwise until α ¼ 90�; when w/l ¼ 1, the rectangle becomes a square, the moment is negative (clockwise) when α < 45�, and rotates 
the square towards α ¼ 0� and α ¼ 90�. In another word, the stable positions of a rectangular cylinder are always the same despite 
different aspect ratios: length must be perpendicular to the mainstream (Fig. 7); a square cylinder, as a special case where the length is 
equal to the width, can be stable when either edge is perpendicular to the mainstream, but is not stable when the diagonal is 
perpendicular to the mainstream (α ¼ 45�) despite an equilibrium position there. Drag is more sensitive to aspect ratios, as shown in 
Fig. 6(a) and (c). When w/l < 0.5, drag reaches maximum at α ¼ 90�. As width w grows, the angle with maximum drag decreases until 
α ¼ 45� when w/l ¼ 1. That means, the stable positions of a rectangular cylinder can correspond to maximum drag, minimum drag, or 
somewhere between them. 

4. Conclusions 

Inspired by a corollary of the construtal law, we tried to investigate the relation between drag and stable positions of objects in fluid 
flow. Our focus is on two simple examples: an elliptical cylinder and a rectangular cylinder with fixed centroids in uniform main-
stream. Based on quasi-steady assumptions and the concept of “static stability”, we derived a stability criterion: stability is determined 
by the direction of resultant moment at steady state when the object rotates by a small angle about its centroid. 

Both the elliptical cylinder and rectangular cylinder have two equilibrium positions when rotating from one symmetry axis to the 
next, yet only one stable position. The elliptical cylinder is stable when its major axis is perpendicular to the mainstream and the drag 
reaches maximum. However, the rectangular cylinder is stable when its length is perpendicular to the mainstream with drag depending 
on the aspect ratio: the drag is maximum for a slim rectangle (w/l < 0.5), minimum for a square (w/l ¼ 1) and in the middle for a broad 
rectangle (0.5 <w/l < 1). 

Our results reveal that there is no universal relation between drag and stability. For a slim object, such as the circular cylinder in 
Fig. 1, an ellipse and a slim rectangle, stable positions tend to correspond to maximum drag. In contrast, for some geometries, such as a 
square, stable positions may correspond to minimum drag; for others, stable positions may also correspond to drag in the middle. 
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Fig. 7. The stable position of the rectangular cylinder (w � l).  
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