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Physics-encoded deep learning in identifying battery parameters without 
direct knowledge of ground truth 
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H I G H L I G H T S  

• Physical laws and on-line observation are embedded into machine learning. 
• Low-cost voltage data are used to identify complex battery parameters. 
• Machine learning is used without knowledge of ground truth as the training data. 
• Electrode diffusivities as complex functions of Li concentration are identified. 
• Method is immune to measurement noise and simultaneously estimates many parameters.  
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A B S T R A C T   

We show a method to embed physical laws and on-line observation into machine learning so that irrelevant low- 
cost battery data can be utilized to identify complex system parameters by machine learning without knowledge 
of their ground truth as the training data. Lithium diffusivity, a complicated function of lithium concentration, is 
a crucial parameter for battery performance but difficult to measure directly. We take diffusivity as an example 
and show that it can be obtained from easily measured sequence of battery voltage over time. In simulations, our 
results show that this method accurately quantifies not only the diffusivities of both positive and negative 
electrodes, but also as complex non-linear functions of lithium concentration, purely based on the cell voltage 
data requiring neither diffusivity nor concentration measurement. Notably, it can accurately predict non- 
monotonic, many-to-one relations such as “w” shape functions. Moreover, this method is immune to measure
ment noise and capable of simultaneously estimating multiple parameters. In experiments, our method dem
onstrates more robust diffusivity estimation than a pure physics-based parameter fitting method and a widely 
used experimental technique. Our results suggest that the approach enables identifying physical parameters and 
their interdependence without direct measurements of those parameters.   

1. Introduction 

The past decades have witnessed great advances in lithium-ion bat
tery technology, which now powers applications from consumer elec
tronics to electric vehicles. Physics based modeling [1–4] has provided 
comprehensive understanding of the battery behaviors, shedding lights 
on the battery design optimization. However, the physics-based model 
consists of dozens of parameters, many of which depend on temperature, 
state of charge (SOC) or other state variables. Unfortunately, the 
acquisition of those parameters can be complex and expensive [5–8]. 

For example, lithium diffusivity, a complicated function of lithium 
concentration, is a crucial parameter for battery performance [9,10] but 
difficult to measure directly. The traditional methods to measure lithium 
diffusivity in active materials, such as electrochemical impedance 
spectroscopy (EIS) [11], galvanostatic intermittent titration technique 
(GITT) [12,13] and potential intermittent titration technique (PITT) 
[14], require expensive electrochemical workstations and sophisticated 
test recipes. Consequently, the online estimation of physical parameters 
remains difficult, which limits the applications of physics-based 
modeling. Meanwhile, modern battery management systems have 
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been equipped with multiple voltage, current and temperature sensors 
and powerful processors, enabling more data to be accessible and 
analyzed. This requires us to infer crucial parameters from the easily 
measured voltage, current and temperature signals. 

A popular way to model complicated systems is deep learning, which 
has attracted unprecedented attention from both industry and academia 
[15–19]. Deep neural networks are well known to be capable of 
approximating any function [20]. However, pure data-driven models 
require large amount of data to train [21]. What is worse, even if they 
are fully trained to predict the relation among signals, the learned 
models reveal little about the internal mechanisms and are not inter
pretable [22]. A possible solution may lie in the utilization of existing 
physics, or more broadly, knowledge [23]. In recent years, researchers 
have attempted to combine data and physics together for modeling [24]. 
Physics can be embedded in multiply ways such as features [24] and 
algorithm structures [25]. A stricter and stronger method is to incor
porate partial differential equations (PDE). Zhao et. al. [26,27] used 
PDE-constrained optimization to infer constitutive laws from image data 
in pattern formation problems. Raissi et. al. [28,29] enforced equations 
to leverage deep neural networks as a PDE solver. For battery state of 
heath models, Crawford et. al. [30] found that incorporating the insights 
from physics models, their statistic model is faster and more robust for 
capacity degradation prediction. There are two major issues that were 
not clearly discussed in the previous studies. One is the validity of the 
knowledge; they typically took the physics knowledge for granted 
without investigating the discrepancy between data and physics. The 
other is the form of unknown parameters; they used constant or pre
determined functions to represent unknown physical parameters. We 
aim to consider the tradeoff between physics and data, and solve for 
parameters with unknown dependence on other variables. We estimate 
not only constant parameters, but also the unknown functional rela
tionship between dependent parameters. 

In this paper, we introduce a paradigm to infer the internal param
eters of a battery system. We present an example of inferring the particle 
diffusivity as a function of Li ion concentration using only voltage 
training data, without any knowledge of concentration/diffusivity pair 
as the training data (in fact, neither concentration nor diffusivity is 
known). Single particle model (SPM) [31,32] is incorporated into the 
network as prior knowledge. Our fusion of data-based approach and 
model-based approach not only helps to reduce the required training 
data, but also enables the estimation of parameters appearing in physical 
equations, which can even be the functions of state variables. Thanks to 
the generality of neural network and our framework, we could estimate 
any relations between parameters and state variable without any prior 
knowledge of the function form. For instance, diffusivity is not a 

constant but depends on the ion concentration, and we can accurately 
predict the non-monotonic, many-to-one relations such as the “w” shape 
function of diffusivity as a function of ion concentration, without any 
diffusivity or concentration data. The prediction accuracy of our method 
is excellent for simulation data. Furthermore, the performance of our 
diffusivity estimation is verified using the experimental voltage data. 
The comparison with the results obtained by two other techniques, 
direct experimental measurement of diffusivity by GITT and model- 
based parameter fitting, shows the high stability and reliability of our 
approach. 

2. Methodology 

We first introduce a physics-based model, i.e., SPM. Then, we show 
the proposed approach of incorporating physics-based model and online 
observation into a data-driven model for model parameter determina
tion by regularizing a deep neural network (DNN) with SPM during 
training. 

2.1. Single particle model 

SPM is a simple battery model to describe current and lithium flow in 
lithium-ion batteries. It has high accuracy when the current is not high. 
As shown in Fig. 1, the model simplifies the two electrodes as two 
representative spherical particles and the current is uniform at the 
particle surfaces. Lithium ion concentration inside the particles is 
determined by diffusion, which follows the Fick’s law, 

∂ci

∂t
=

1
r2

∂
∂r

(

r2Di
∂ci

∂r

)

(1)  

where ci(r, t) is the solid-phase lithium-ion concentration as a function of 
the radial coordinate r and time t, subscripts i = p and i = n denote the 
positive and negative electrode, respectively, and Di is the diffusion 
coefficient. 

The particle center has zero flux, giving 

∂ci

∂r

⃒
⃒
⃒
⃒

r=0
= 0 (2) 

The current density at particle surface (r = Ri) is given by 

− Di
∂ci

∂r

⃒
⃒
⃒
⃒

r=Ri

= Ji (3)  

where Ji denotes the lithium intercalation/de-intercalation mass flux on 
the particle surface. The flux is related to the applied current density by 

Jp =
iapp

FapLp
, Jn =

− iapp

FanLn
(4)  

where iapp denotes the applied current density (current per unit area of 
current collector) and is defined positive during charging (i.e. Li ions 
flow from the positive electrode to the negative electrode), F denotes the 
Faraday constant, Li denotes the electrode thickness, and ai = 3εi/Ri 
with εi being the volume fraction of the solid phase in the electrode. At t 
= 0, the concentration is known to be 

ci(r, 0) = ci,0 (5) 

The governing equation (1), boundary conditions (2) and (3), and the 
initial condition (5) can be used to solve ci(r, t). However, the battery 
system is complicated since the diffusivity Di is very sensitive to internal 
structure and external environment, and may change as the battery ages. 
Therefore, it is almost impossible to describe the system a priori. We 
must build an adaptive model with online parameter estimation. In 
applications, after a battery is assembled, we are not able to directly 
obtain the lithium concentration, except knowing that the cell voltage, 
V, depends on the concentration implicitly. 

Fig. 1. Illustraion of modeling a discharge step by SPM.  
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Lithium ion transfer current density at the particle surface,FJi, is 
governed by the Butler-Volmer equation, 

FJi = Fki
(
ci,max − ci,surf

)0.5c0.5
i,surf c

0.5
e

[

exp
(

Fηi

2RT

)

− exp
(

−
Fηi

2RT

)]

(6)  

where ki is the reaction rate constant, ci,max is the maximum lithium 
concentration in the particle, ci,surf is the lithium ion concentration on 
the particle surface, ce is electrolyte concentration, R is ideal gas con
stant, and T is temperature. ηi = ϕs,i − ϕe,i − Ui(ci,surf ) denotes the over- 
potential calculated by the solid potential ϕs,i, electrolyte potential ϕe,i 

and the open circuit potential Ui(ci,surf ) which depends on the surface 
concentration. 

The voltage of the whole cell is given by 

V = ϕs,p − ϕs,n + iappRcell (7)  

where Rcell is the electrolyte resistance per current collector area. 
Combining Eqs. (4), (6) and (7), we have  

where mp = iapp/
[
FkpLpap

(
cp,max − cp,surf

)0.5c0.5
p,surf c

0.5
e

]
and mn =

iapp/
[
FknLnan

(
cn,max − cn,surf

)0.5c0.5
n,surf c

0.5
e

]
. 

2.2. Embedding physics and on-line observation in neural network 

For data-driven models, a straightforward idea to describe the bat

tery system is to train a DNN to learn the function ĉi(r, t; θ̂
′

i) parame

terized by learnable weights θ̂
′

i of the network (we use hat to denote 
learnable parameters or functions). However, the challenge is that we do 
not have the ground truth of concentration data, and only know the 
voltage data but Eq. (8) cannot give concentrations backwards. 

Now that physics-based SPM and data-driven models are difficult to 
quantify the battery system individually, we propose to combine them 
by encoding Eqs. (1)–(5) to a DNN. The diffusivity Di is regarded as 
unknown and will be learned together with neuron weights. Thus, we 

separate θ̂
′

i into D̂i and θ̂ i, and re-write the learned function approx
imator as ĉi(r, t; D̂i, θ̂ i), where D̂i aims to approximate diffusivity Di and 
can be a constant or a set of parameters to describe the relation between 
diffusivity and other variables (such as concentration). By explicitly 
separating diffusivity from other parameters, we are able to use Eqs. (1)– 

(5) as a constraint of D̂i. In this way, the approximator is easily trained. 
Meanwhile, we could extract diffusivity Di ≈ D̂i after training. 

Formally, we train a DNN approximator ĉi(r, t; D̂i, θ̂ i) with a loss 
function, 

L(D̂i, θ̂ i) = w1s1,iEr,t

[(
∂ĉi

∂t
−

1
r2

∂
∂r

(

r2 D̂i
∂ĉi
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+w5s5Et
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2 ]

(9)  

where w1, w2, …, w5 are weights and s1,i, s2,i, …, s5 are normalization 
factors to make each term dimensionless, V is the measured voltage 
response as a function of time, Ji is the preset current density in Eq. (4), 
V̂ is an indirect output of the DNN, i.e., calculated from ̂ci by Eq. (8). Et [⋅]

denotes temporal average (i.e., Et [f(r, t)] =
∑N

i=1f(r, ti)/N where N is the 
number of sampling points in the t axis), Er[⋅] denotes spatial average (i. 
e., Er[f(r, t)] =

∑N
i=1f(ri, t)/N where N is the number of sampling points 

in the r axis), and Er,t [⋅] denotes the average on both space and time (i.e., 
Er,t [f(r, t)] =

∑N
i=1f(ri, ti)/N where N is the number of sampling points in 

the two dimensional r,t plane). For the normalization factors we choose 
s1,i = t2

max/
(
ci,max − ci,min

)2 where tmax denotes the maximum discharging 
time considered and ci,min is the minimum lithium concentration in the 
particle,s2,i = R2

i /c2
i,min,s3,i = 1/J2

i ,s4,i = 1/c2
i,min, and s5 = 1/

(Vmax − Vmin)
2 where Vmax and Vmin denote the maximum and minimum 

measured voltage, respectively. 
Note that in Eq. (9) we embed not only the physical law, but also the 

online observation (measurement data) of V into regularization. The 
first four terms, which come from the physical equations, would 
uniquely determine the system if diffusivity were known. Here we as
sume the material property of diffusivity (as an example of unknown 
model parameter) is unknown, so that Di is to be determined. Therefore, 
we incorporate the online observation data as the fifth term in Eq. (9). 
This term acts to minimize the difference between predicted and 
measured voltage data so as to find D̂i. By using the loss function Eq. (9), 
we not only make it possible to obtain the concentration ̂ci, but can also 

Fig. 2. Schematic of the deep neural networks used for (a) one electrode with an unknown constant diffusivity; (b) two electrodes each having an unknown constant 
diffusivity; and (c) one or two electrodes with concentration-dependent diffusivity. 
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extract the diffusivity D̂i as a function of concentration without 
requiring knowing any prior knowledge of their relation. The depen
dence of D̂i on ĉi can be any form and we use a neural network to 
describe the relation. Examples and details of DNN are given in the 
following section. 

3. Simulation 

We use four simulation examples to demonstrate our method and test 
its performance. Two of the examples use a half cell where the positive 
electrode is porous lithium manganese oxide (LMO) and the negative 
electrode is lithium metal. Since the reaction at the lithium metal has an 
equilibrium potential of 0 V with respect to Li+/Li and the voltage loss of 
this reaction is assumed negligible comparing to the positive electrode, 
we can set Un = 0 and mn = 0 in Eq. (8). In the other two examples, we 
simulate a full cell with LMO as the positive electrode and graphite as 
the negative electrode. In our simulation, we discharge a fully charged 
battery until a certain voltage threshold. Typical battery properties and 

discharge conditions can be found in ref [5]. We use the finite element 
software package, COMSOL Multiphysics, to simulate the voltage of a 
cell with various given diffusivity (as functions of concentrations) dur
ing discharging. The simulated voltage as a function of time, treated as 
the measured signal, serves as the training data of a DNN. The diffusivity 
functions used in generating the simulated voltage data are the ground 
truth diffusivity, which will be used to access the accuracy of the esti
mated diffusivity. 

DNN is in general used to approximate ĉi(r, t; D̂i, θ̂ i), as shown in 
Fig. 2. There are some variances of the inputs and outputs, which are 
detailed later in the examples. In Eq. (9), by which the DNN is trained, 
we put different weights on different terms. A larger weight is assigned 
to the last term of Eq. (9) by w5 = 10. Other weights are w1,i = 2 and w2,i 
= w3,i = w4,i = 1. In each training step, 4,000 spatial–temporal points are 
sampled from the space [0,Ri] × [0, tmax] to calculate the expectation in 
the loss function. The loss function is minimized by the L-BFGS-B algo
rithm for 50,000 steps. 

3.1. One electrode with unknown constant diffusivity 

We start with a half cell with a lithium metal reference/counter 
electrode and a positive porous electrode whose diffusivity is constant. A 
deep neural network ĉ(r, t; D̂, θ̂) is used to represent the relationship 
between the inputs r (distance from particle center), t (time) and output 
ĉ (lithium concentration in the positive electrode), as shown in Fig. 2a. 
This is a half cell so for simplicity we omit the subscript ‘p’. The DNN is 
composed of eight intermediate linear layers which are all 20-dimen
sional and connected by the tanh activation function; positive elec
trode diffusivity D̂ is learned together with DNN weights θ̂. The essence 
to achieve a better approximation of ̂c to the true concentration, c, lies in 
the carefully designed loss function L(D̂, θ̂) in Eq. (9). 

To show the effectiveness and robustness of the proposed method, we 
add Gaussian noise to the simulated voltage. As listed in Table 1, the 
estimation results show that the developed method is accurate despite 
the presence of measurement noise. 

Table 1 
Estimated diffusivity and error with voltage noise levels. The true diffusivity 
is 1 × 10-14 m2 s− 1. The initial value is set as 1 × 10-13 m2 s− 1, one order of 
magnitude larger than the true value. Voltage noise is quantified by standard 
deviation of a Gaussian distribution.  

Voltage noise (V) Estimated diffusivity (m2 s− 1) Error 

0 1.00089 × 10-14  0.08901% 
0.005 1.00534 × 10-14  0.53378% 
0.01 9.80229 × 10-15  1.97707% 
0.03 9.75887 × 10-15  2.41130%  

Table 2 
Estimated diffusivity of positive and negative electrodes and electrolyte 
resistance. The initial values for Dp and Dn are 1 × 10-13 m2 s− 1, and for Rcell is 1 
× 10-3 Ω m2.  

Parameter Truth Estimated Error 

Dp 1 × 10-14 m2 s− 1 1.00412 × 10-14 m2 s− 1  0.41240% 
Dn 1 × 10-14 m2 s− 1 1.00317 × 10-14 m2 s− 1  0.31719% 
Rcell 3.24 × 10-4 Ω m2 3.23483 × 10-4 Ω m2  0.15953%  

Fig. 3. Estimation results of concentration-dependent diffusivity for a half-cell. The ground truth diffusivity of positive electrode is (a) D(c) = D0(1 − c/cmax), where 

D0 = 10− 14 m2 s− 1 (b) D(c) = D0

(
1 + 100 × (1 − c/cmax)

1.5
)

, where D0 = 2× 10− 16 m2 s− 1. The form of D(c) is unknown to the DNN. 
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3.2. Two electrodes with unknown constant diffusivity and electrolyte 
resistance 

We extend the method to estimate multiple parameters. Using the 
neural network in Fig. 2b, we applied the method to not only estimating 
the diffusivity of both positive and negative electrodes in a full cell, but 
also the electrolyte resistance. Two DNNs, ̂cn(r, t; D̂n, R̂cell, θ̂n) and ̂cp(r, t;
D̂p, R̂cell, θ̂p) are both composed of eight intermediate linear layers which 
are all 20-dimensional and are connected by tanh activation function. 
The results listed in Table 2 show that the developed method is capable 
of simultaneously estimating multiple parameters with good accuracy. 

3.3. One electrode with unknown concentration-dependent diffusivity 

Assuming that lithium diffusivity is a function of concentration, we 
introduce an additional sequential deep neural network as shown in 
Fig. 2c in order to capture the relation between concentration and 
diffusivity. 

There are two DNNs in a sequence, ̂cp(r, t; θ̂p) and D̂p(cp; θ̂
′

p). The first 
one is composed of eight intermediate linear layers which are all 20- 
dimensional and connected by the tanh activation function, and the 
second one is composed of three 5-dimensional linear layers connected 
by the tanh activation function. This sequential layout of neural net
works ensures the diffusivity to be only dependent on concentration. 
Note that in constructing the second neural network, we have no pre- 

Fig. 4. Estimated concentration-dependent diffusivity for the positive electrode. The negative electrode diffusivity is set as D(c) = D0(1 − c/cmax) with D0 unknown. 
The ground truth positive electrode diffusivity is (a) a power law function, and (b) a w-shaped function. The form of D(c) is unknown to the DNN. 

Fig. 5. Box plots of (a) diffusivity estimation results and (b) relative voltage root mean squared error (RMSE) of galvanostatic intermittent titration technique (GITT), 
our proposed physics-encoded deep learning (PEDL) and single particle model (SPM) with voltage data in different time lengths. The center lines denote median 
values, the boxes denote upper and lower quantiles, and the two outer lines denote extreme values. 
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existing knowledge on the explicit form of function relating diffusivity to 
concentration. The layout simultaneously solves parameters to minimize 
the loss function, which satisfies the governing laws, while enforcing 
diffusivity to be a function of concentration. The function is automati
cally learned through minimizing the loss defined in Eq. (9). Fig. 3 shows 
the estimated diffusivity in two examples with two different forms. Both 
Fig. 3a and Fig. 3b show good agreement between the estimated and true 
values, regardless of diffusivity’s linear or non-linear dependence on 
concentration. 

3.4. Two electrodes with unknown concentration-dependent diffusivity 

An even more challenging task is to estimate the diffusivities of both 
electrodes as functions of concentration at the same time in a full cell. In 
this case, we assume that the positive electrode diffusivity has an un
known relation with concentration, while the negative electrode diffu
sivity follows a linear relation with concentration, i.e.D(c) =

D0(1 − c/cmax), but D0 is unknown. We use three DNNs,ĉn(r, t; θ̂n, D̂0), 

ĉp(r, t; θ̂p) and D̂p(cp; θ̂
′

p). The first two have the same architecture, eight 
intermediate linear layers which are all 15-dimensional and connected 
by the tanh activation function, and the last one is composed of three 5- 
dimensional linear layers connected by tanh activation function. Nega
tive electrode diffusivity D0 is a parameter learned together with DNN 
weights. 

We use two examples to highlight the power of this method. In the 
first example, the positive electrode diffusivity is set as a power law 
function. The estimated positive electrode diffusivity result is shown in 
Fig. 4a. The unknown coefficient D0 in the negative electrode diffusivity 
relation is estimated as 9.9817 × 10-15 m2 s− 1 while the true value is 1 ×
10-14 m2 s− 1. In the second example, the positive electrode diffusivity is 
set as a complicated non-monotonic, many-to-one relation “w” shape 
function of concentration. The estimation result is shown in Fig. 4b. The 
unknown coefficient D0 in the negative electrode diffusivity relation is 
estimated as 9.9791 × 10-15 m2 s− 1 while the true value is 1 × 10-14 m2 

s− 1. The training loss and concentration profiles are shown in 
Appendix A. Both examples indicate good agreement between the DNN- 
extracted results and the true values. 

4. Experiment 

To further elucidate the performance of our proposed approach, we 
estimate the solid diffusivity of graphite in a lithium-graphite coin cell. 
We also compare the results of our method with direct experimental 
measurement by GITT and SPM-based parameter fitting. 

4.1. Cell fabrication 

We made CR2032 coin cells with lithium and graphite electrodes. 
Graphite powder was mixed with polyvinylidene fluoride (PVDF) binder 
(10 wt%), super P (10 wt%) and 1-Methyl-2-pyrrolidone to make a 
homogeneous slurry. The slurry was pasted on Cu foil and vacuum-dried 
at 110 ◦C for 12 h. Next, graphite electrode pieces were cut into discs 
with a diameter of 10 mm. The mass loading was about 4 mg cm− 2. The 
graphite disc, lithium metal counter electrode and separator were sealed 
and assembled into 2032 type coin cells in an argon-filled glove box with 
less than 0.1 ppm oxygen and moisture. The electrolyte solution was 1 M 
lithium hexafluorophosphate solution (LiPF6) dissolved in a mixture 
(1:1, v/v) of ethylene carbonate (EC) and dimethyl carbonate (DMC). 

4.2. Measurement 

We firstly cycled the assembled cell 10 times at 50 mA g-1
graphite be

tween 0.01 V and 1.5 V to stabilize the performance. Then the cell was 
rested for at least 12 h to reach equilibrium. To perform graphite 
diffusivity estimation, we applied a pulse charging (graphite 

deintercalation) current of 50 mA g-1
graphite to the cell with a computer- 

controlled MACCOR cycler. The device collected the voltage data of 
the cell for 30 s. 

4.3. Postprocessing and results 

In addition to our method, we use GITT and SPM to obtain the 
diffusivity value for comparison. 

GITT is a standard approach to measure diffusivity by applying a 
current pulse, and the measured diffusivity is given by [12] 

D =
4
π

(
IVM

SF

)2[(dU0

dδ

)/(
dV

d
̅̅
t

√

)]2

(10)  

where VM is the molar volume of the sample, V is the cell voltage as a 
function of time t after the current pulse, dU0/dδ denotes the derivative 
of the open circuit voltage with respect to state of charge (SOC) when the 
full stoichiometry window is used, I is the total current, S is the total 
surface area and F is the Faraday constant. 

For SPM-based parameter fitting, we built a single particle model 
using COMSOL which solves Eqs. (1)–(8). The diffusivity D is estimated 
from the charging curve fitting using the optimization module. Rcell is 
pre-determined from the first voltage point and cell open circuit voltage 
using Eq. (8). 

For our proposed method, the problem is simplified as one electrode 
with unknown constant diffusivity. We reduced the loss function weight 
w5 to 2 and keep other weights the same (w1,i = 2, w2,i = w3,i = w4,i = 1). 
Rcell is pre-determined from the first voltage point and cell open circuit 
voltage using Eq. (8). 

The material properties used in the models are presented in 
Appendix B. 

We used voltage data in six different time lengths, 5 s, 10 s, 15 s, 20 s, 
25 s and 30 s, and they all starts from 0 s. For GITT, we removed the first 
three data points to eliminate capacitive effects [12]; for other methods, 
we used all data points in the interval. As expected, the fitted diffusivity 
value varies with time lengths. The distributions of estimated diffusivity 
from three different methods are shown in Fig. 5a. Taking the GITT 
results as a reference, our method (denoted as PEDL for physics encoded 
deep learning) shows better stability towards data selection: the esti
mated diffusivity has the smallest variance between using the six 
different time lengths. This is because (1) GITT is only accurate in a short 
time period [12] and the SPM encoded in neural network is valid in a 
broader time range than Eq. (10) used in the GITT technique, and (2) our 
method balances the error from equations and data so it is more immune 
to violation of physical assumptions. 

Meanwhile, our method is more accurate than the traditional SPM 
solved by finite element method (FEM). The cause is similar to the 
second reason for GITT. In SPM, the initial condition is that Li concen
tration is assumed to be uniformly distributed across the radius. Yet, that 
may not be true in experiment. Also, due to variance of particle shape 
and radius, the voltage prediction of SPM is not accurate. Our method 
shows the superior capability to correct the inaccuracy in model as
sumptions by leveraging the voltage data. It estimates the diffusivity by 
balancing data-driven and physics-based models. When the model as
sumptions are not accurate and lead to large data discrepancy, our 
method could relax the assumptions and get more satisfying estimation 
results. In contrast, the parameter estimation based on physics-based 
models suffer from the uncertainty of model assumptions such as the 
initial conditions and constant cycling current because those conditions 
need to be strictly satisfied for the models to be work. To compare the 
voltage difference between model predictions and experimental data, 
we calculated the relative root mean squared error (RMSE) defined by 

relative RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(Vi − V̂i)
2

NVi
2

√
√
√
√ (11) 
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The results are shown in Fig. 5b. The SPM-based parameter fitting 
performs the worst with a high error. Detailed data are available in 
Appendix C. 

5. Conclusions 

We have developed a systematic approach to estimate battery pa
rameters (diffusivity as an example) through physics-encoded deep 
learning trained with easily measured voltage data. We successfully 
estimated the electrode diffusivity as a general function of concentra
tion, which was experimentally unobtainable. Moreover, the accuracy 
and stability of our method are verified by the experimental voltage 
data. The proposed framework that integrates machine learning, 
physics-based modeling, and on-line observation provides a powerful 
tool capable of identifying the values of parameters and their interde
pendence functions in complex physical systems. 
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Appendix A. Additional details of the example with w-shape 
diffusivity in Section 3.4 

Some additional details about the example with w-shape diffusivity 
(Fig. 4b) are shown below. Fig. A1 shows the training loss, which 

Fig. A2. Concentration profiles of (a) positive electrode and (b) negative electrode. The marks denote the predictions by DNN. The solid blue lines denote the ground 
truth calculated by SPM. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. A1. Evolution of training loss.  
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confirms good convergence. The concentration profiles of the two 
electrodes are shown in Fig. A2. The predicted concentration distribu
tions at different time steps (marks) agree well with the ground truth 
(solid blue lines). We can observe that the concentration of the positive 
electrode is a complicated function due to the complexity of w-shape 
diffusivity. 

Appendix B. Parameters used to fit experiment data 

The material properties used in Section 4 are presented in Tables B1 
and B2. 

Appendix C. Fitted diffusivity values and relative error on 
experimental data 

The fitted diffusivity values and relative error are presented in 
Tables C1 and C2 respectively. 
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Table B1 
Parameters used in SPM and PEDL.  

Symbol Description Value 

cmax Maximum solid Li concentration 31,507 mol m− 3 

rp Graphite particle radius 10.8 μm 
εs Solid volume fraction 0.28 
ce Electrolyte concentration 1000 mol m− 3 

k Reaction rate constant 5 × 10-10 m2.5 mol− 0.5 s− 1 

T Temperature 298 K 
l Graphite electrode thickness 30 μm 
I Applied current 1.2 × 10-4 A 
Acell Cell/electrode cross-sectional area 7.854 × 10-5 m  

Table B2 
Parameters used in GITT.  

Symbol Description Value 

VM Molar volume of lithium in graphite 3.17 × 10-5 m3 mol− 1 

S Graphite surface area,Acell l× 3εs/rp 1.83× 10− 4 m2 

I Applied current 1.2 × 10-4 A  

Table C1 
Estimated diffusivity D from different methods and data selection (unit: m2 s− 1).  

Data time length (s) GITT PEDL SPM 

5 9.01E-16 1.15E-15 6.34E-16 
10 1.19E-15 8.64E-16 7.13E-16 
15 1.40E-15 1.10E-15 8.02E-16 
20 1.58E-15 1.23E-15 8.87E-16 
25 1.74E-15 1.41E-15 9.71E-16 
30 1.88E-15 1.38E-15 1.05E-15  

Table C2 
Relative RMSE from different methods and data selection.  

Data time length (s) GITT PEDL SPM 

5 1.46E-03 1.13E-03 1.84E-03 
10 1.73E-03 1.29E-03 2.41E-03 
15 1.87E-03 1.21E-03 3.25E-03 
20 2.08E-03 1.18E-03 4.50E-03 
25 2.20E-03 1.19E-03 5.60E-03 
30 2.33E-03 1.20E-03 6.56E-03  
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